Terry J. Watt PhD

Terry J. Watt PhD

Associate Professor

The overall goal of research in the Watt lab is tounderstand the biological roles of lysine deacetylases (KDACs) and thebiochemical mechanisms underlying those functions.

Metal-dependent lysine deacetylases (KDACs, also known ashistone deacetylases or HDACs) are multi-functional proteins that mediatecontrol of numerous cellular processes and have been implicated in manycancers.  KDACs regulate the behavior ofother cellular proteins through control of the post-translational modificationof lysine residues.  Acetylation anddeacetylation of proteins have been directly associated with a wide range ofbiological processes, including metabolic regulation and organismal developmentas well as numerous cancers and other diseases. Using a combination of in vitro and computational techniques, we areinvestigating the specific molecular features of KDACs leading to non-histonesubstrate selection and catalytic activity. Mapping the interactions in each KDAC active site that determineselectivity provides new design strategies for more targeted inhibitors asdrugs leads.

Using gene-edited cell lines that selectively control KDACcatalytic activity while retaining endogenous expression, we are alsoinvestigating the specific non-histone targets of several KDACs, the cellularcomponents that regulate KDAC activity, and the functional roles of KDACs.  Improved understanding of the specificinteractions and substrates of KDACs will suggest novel targets for cancertreatment.  Furthermore, there is limitedunderstanding of the function of acetylation itself on proteins undergoing themodification, in part because the factors regulating the addition and removalof the modification are not well-characterized. Enhanced understanding of the core biology associated with KDACs hasdirect relevance to understanding the impact of increased or decreased KDACexpression that has been reported in numerous cancers, and hence when targetingthe KDAC or a downstream target of a KDAC may be an appropriate therapeuticstrategy.  

Key Words

Histone Deacetylase (HDAC)

Lysine Deacetylase (KDAC)

Gene Ontology

Gene Editing

RNA-seq

Substrate Specificity

Post-translational Modification (PTM)

Enzyme Kinetics

Molecular Dynamics

Education

  • B.S. in technical writing, Carnegie Mellon University
  • B.S. in chemistry, Carnegie Mellon University
  • M.S. in chemistry, Carnegie Mellon University
  • Ph.D. in biochemistry, Georgia Institute of Technology (2007)
  • Postdoctoral research associate, University of Michigan - Ann Arbor (2008-2010)
  • Assistant professor of chemistry, Xavier University of Louisiana (2010-2016)
  • Associate professor of chemistry, Xavier University of Louisiana (2016- )

Select Publications

Toro TB, Edenfield SA, Hylton BJ, Watt TJ. Chelatable trace zinc causes low, irreproducible KDAC8 activity.  Anal. Biochem. 2018, 540-541, 9-14.  PMID: 29100752

Toro TB, Painter RG, Haynes RA, Glotser EY, Bratton MR, Bryant JR, Nichols KA, Matthew-Onabanjo AN, Matthew AN, Bratcher DR, Perry CD, Watt TJ.  Purification of metal-dependent lysine deacetylases with consistently high activity.  Protein Exp. Purif. 2018, 141, 1-6.  PMID: 28843507

Toro TB, Bryant JR, Watt TJ.  Lysine deacetylases exhibit distinct changes in activity profiles due to fluorophore-conjugation of substrates.  Biochemistry 2017, 56, 4549-4558.  PMID: 28749131

Toro TB, Pingali S, Nguyen TP, Garrett DS, Dodson KA, Nichols KA, Haynes RA, Payton-Stewart F, Watt TJ.  KDAC8 with high basal velocity is not activated by N-acetylthioureas.  PLoS One 2016, 11, e0146900.  PMID: 26745872

Toro TB, Watt TJ.  KDAC8 substrate specificity quantified by a biologically-relevant, label-free deacetylation assay.  Protein Sci. 2015, 24, 2020-2032.  PMID: 26402585

Johanson KE, Watt TJ.  Inquiry-based experiments for large-scale introduction to PCR and restriction enzyme digests.  Biochem. Mol. Bio. Ed. 2015, 43, 441-448.  PMID: 26503481

Toro TB, Nguyen TP, Watt TJ.  An improved 96-well turbidity assay for T4 lysozyme activity.  MethodsX 2015, 2, 256-262.  PMID: 26150996

Johanson KE, Watt TJ, McIntyre NR, Thompson M.  Purification and characterization of enzymes from yeast: an extended undergraduate laboratory sequence for large classes.  Biochem. Mol. Bio. Ed. 2013, 41, 251-261.  PMID: 23868379

LCRC Faculty

Ambuga Badari, MD
Translational Oncology
Ochsner Health
Van Barnes, PhD
Cancer Biology
Tulane University School of Medicine
Collette Baudoin, PhD
Population Sciences
LSU Health - New Orleans
Victoria P. Belancio PhD
Genes X Environment
Tulane University School of Medicine
Jorge A. Belgodere ,PhD
Population Sciences
Tulane University School of Medicine
Earl "Nupsius" Benjamin-Robinson DrHSc CPH
Population Sciences
Louisiana Cancer Research Center
Hector Biliran PhD
Cancer Biology
Xavier University
Tom Bishop PhD
Genes X Environment
Louisiana Tech University
David Blask MD PhD
Cancer Biology
Tulane University School of Medicine